1 2 3		Enbridge Gas New Brunswick Cost of Service and Rate Design Testimony Prepared January 15, 2010
4 5	Secti	ion 1 - Introduction
6 7	Q.	PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
8	A.	H. Edwin Overcast
9		P. O. Box 2946
10		McDonough, GA 30253
11		
12	Q.	WHAT IS YOUR POSITION AND BY WHO ARE YOU EMPLOYED?
13	А.	I am a Director with Enterprise Management Solutions, a Black & Veatch
14		Corporation.
15		
16	Q.	ON WHOSE BEHALF ARE YOU APPEARING?
17	A.	I am appearing on behalf of Enbridge Gas New Brunswick ("EGNB").
18		
19	Q.	PLEASE DESCRIBE YOUR BUSINESS AND PROFESSIONAL
20		BACKGROUND.
21	А.	A detailed description of my educational and business background is provided in
22		Appendix A. Briefly, I have a Ph. D. in Economics from Virginia Polytechnic
23		Institute and State University. I have been employed in various analytical,
24		management and executive positions in the gas and electric industry for over 35
25		years. During that time, I have testified extensively on a variety of regulatory
26		matters, including cost of service and rate design for natural gas Local
27		Distribution Companies (LDCs) in both a bundled and unbundled service model
28		and in Canada and the United States. I have participated as an instructor in the
29		American Gas Association Rate Fundamentals and advanced courses on both rate
30		and cost of service issues. I have developed rates for new service areas called
31		economic development rates and have developed rates for alternate fuel and
32		bypass competition.

1		
2	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS
3		PROCEEDING?
4	А.	My testimony addresses the development of the cost of service study, both
5		principles and practices, and a potential rate design for gas delivery service. I
6		address certain fundamental rate design principles and how those principles are
7		translated in to rate design for a mature utility.
8		
9	Q.	HOW IS THE TESTIMONY ORGANIZED?
10	A.	The testimony is organized in the following sections:
11		Section 1- Introduction
12		Section 2- Cost of Service Principles
13		Section 3- The Cost of Service Process
14		Section 4- Results of the Cost Study
15		Section 5- Principles of Rate Design
16		Section 6- Rate Design for the Proposed Service Classes
17		Section 7- Summary
18		In addition, an exhibit consisting of six schedules is attached to the testimony.
19		
20	Q.	PLEASE SUMMARIZE YOUR CONCLUSIONS AND
21		RECOMMENDATIONS.
22	A.	I recommend that the proposed cost of service study be accepted as a reasonable
23		cost allocation study for a gas distribution utility such as EGNB. I further
24		recommend that the proposed rate design concepts be accepted as the basis for
25		any future transition from market based rates to cost of service rates. In addition,
26		I recommend that the results of the cost study form a part of the assessment of the
27		timeline for ending the Development Period.

1		
2	Section	on 2 - Cost of Service Principles
3		
4	Q.	WHAT IS THE PURPOSE AND USE OF THE COST OF SERVICE
5		STUDY?
6	A.	There are many purposes for utility cost analysis, ranging from designing
7		appropriate price signals to determining the share of costs or revenue
8		requirements borne by various rate classes. In this case, the cost study provides a
9		picture of the annual costs associated with a mature utility service area operating
10		under the traditional rate of return regulation. The cost study illustrates the
11		revenue required from each class to produce the allowed return for the test year
12		2010.
13		
14	Q.	PLEASE DISCUSS THE CONCEPT OF A TEST YEAR.
15	A.	Rates are based on the cost for a test year designed to be the most reasonable
16		estimate of the actual costs and revenues for the first twelve months after new
17		rates take effect. This period is called the "Rate Effective Period". A future test
18		year, as used in the cost of service study for EGNB, looks at expected costs and
19		revenues for the Rate Effective Period and provides the best match of costs and
20		revenues during the period. In this case, the essence of the determination of the
21		end of the Development Period requires a review of the costs and revenues for the
22		Rate Effective Period and beyond to determine if an end to the Development
23		Period is appropriate. Thus, using the 2010 budget estimate for revenues and
24		costs provides the most appropriate definition of the test year not only in theory
25		but in practice.
26		
27	Q.	DOES EGNB RECOMMEND A SPECIFIC ALLOCATION OF COSTS TO
28		RATES BASED ON THE COST OF SERVICE STUDY?
29	А.	No. Cost of service is a guide to the rate design process. As I discuss below,
30		there are many factors that impact the decision as to the rates for each class of
31		service. From an economic perspective, if class rates exceed marginal cost and

are less than stand alone costs, the rates are said to be subsidy free. Thus, factors
other than an embedded cost of service analysis must be considered in
determining class rates. For EGNB, the status of its greenfield development and
the existence of cost deferrals create an additional issue related to cost of service
that most utilities do not have to address. Namely, the allocation of deferred costs
and the ability to recover these costs while maintaining competitive market rates.

- 7
- 8 9

10

Q. PLEASE DESCRIBE THE VARIOUS TYPES OF COST OF SERVICE STUDIES THAT MAY BE USEFUL FOR RATE DESIGN AND THE ALLOCATION OF REVENUE REOUIREMENTS.

11 In general, cost studies may be based on embedded costs or marginal cost. A. 12 Embedded cost studies analyze the costs for a test period based on either the book 13 value of accounting costs (a historical period) or the estimated book value of costs 14 for a forecast test year. Where a forecast test year is used the costs and revenues 15 are typically derived from budgets prepared as part of the utility's financial plan. 16 As noted above this is the most appropriate representation of the Rate Effective 17 Period. Typically, embedded cost studies are used to allocate the revenue 18 requirement between jurisdictions, classes and between customers within a class.

19

20 Marginal cost studies do not reflect actual costs but rely on estimates of the 21 expected changes in cost associated with changes in service. Marginal cost 22 studies are forward looking to the extent permitted by available data. Marginal 23 cost studies are useful for rate design, but not class cost allocation. Where it is 24 important to send appropriate price signals associated with additional 25 consumption by customers, an understanding of marginal cost may be useful. For 26 a gas utility, detailed studies are not required to assess the impact of additional 27 consumption since the delivery system is built for design day requirements and 28 unless the growth increases design day requirements above an amount that 29 existing facilities can deliver (an unlikely result in most instances) marginal cost 30 of load growth from existing customers is zero.

31

1 Q. PLEASE DISCUSS THE REASON THAT COST OF SERVICE STUDIES 2 ARE USED.

3 A. Cost studies represent an attempt to analyze which customer or group of 4 customers cause the utility to incur the costs to provide service. The requirement 5 to develop cost studies results from the nature of utility costs. Utility costs are characterized by the existence of common and joint costs¹. In addition, utility 6 costs may be fixed or variable $costs^2$. Finally, utility costs exhibit significant 7 economies of scale³. These characteristics have implications for both cost 8 9 analysis and rate design from a theoretical and practical perspective. The development of cost studies, either marginal or embedded, requires an 10 11 understanding of the operating characteristics of the utility system. Further, as 12 discussed below, different cost studies provide different contributions to the 13 development of economically efficient rates and the cost responsibility by 14 customer class.

15

16

PLEASE DISCUSS THE APPLICATION OF ECONOMIC THEORY TO Q. 17 COST ALLOCATION.

18 A. The allocation of costs using cost of service studies is not a theoretical economic exercise. It is however a practical requirement of regulation since rates must be 19 20 set based on the cost of service for the utility under cost based regulatory models. 21 As a general matter, utilities must be allowed a reasonable opportunity to earn a 22 return of and on the assets used to serve customers. This is the cost of service 23 standard and equals the revenue requirements for utility service. The opportunity 24 to earn the allowed return depends on the rates applied to customers producing 25 that revenue requirement. Using the information developed in the cost of service

¹ Common costs occur when the fixed costs of providing service to one or more classes or the cost of providing multiple products to the same class use the same facilities and the use by one class precludes the use by another class. Joint costs occur when two or more products are produced simultaneously by the same facilities in fixed proportions. In either case, the allocation of such costs is arbitrary in a theoretical economic sense.

 $^{^{2}}$ Fixed costs do not change with the level of output, while variable costs change directly with the utility output. Most non-fuel related utility costs are fixed and do not vary with changes in load.

³ Scale economies result in declining average cost as output increases and marginal costs must be below average costs.

- 1
- 2 3

study to advise the development of rates for each class by understanding the allocated cost for the class is useful in the rate design process.

However, the existence of joint and common costs makes any allocation of costs 4 5 arbitrary. This is theoretically true for any of the various embedded cost methods 6 that may be used to allocate costs. Theoretical economists have developed the 7 theory of subsidy free prices to evaluate traditional regulatory cost allocations. 8 Prices are said to be subsidy free so long as the price exceeds marginal cost but is 9 less than stand alone costs (SAC). The logic for this concept is that if customers' 10 prices exceed marginal cost those customers make a contribution to the fixed 11 costs of the utility. All other customers benefit from this contribution to fixed 12 costs because it reduces the cost they are required to bear. Prices must be below 13 the SAC because the customer would not be willing to participate in the service if 14 prices exceed SAC.

15

16 SAC is an important concept for EGNB because most customers have previously 17 met requirements for the end uses supplied by natural gas through the use of 18 alternative fuels. In this case, the SAC may not be the cost of stand alone gas 19 facilities, but the use of alternative energy to meet end use requirements. As a 20 result, subsidy free prices permit all customers to benefit from the systems scale 21 and the common costs, and all customers are better off because the system is 22 sustainable. If the process of cost allocation results in rates that exceed stand 23 alone costs for some customers, prices must be set below the SAC, but above 24 marginal cost to assure that those customers make the maximum practical 25 contribution to common costs.

26

SAC plays a role in addressing issues such as competitive bypass where
customers may potentially exit the grid. SAC represents an element of the
allocation process for cost studies and is an alternative to the concept of fully
allocated costs. Unlike other more conventional allocation methods, SAC relies

2

1

3 4

5

6

Q. IF ANY ALLOCATION OF COMMON COSTS IS ARBITRARY, HOW IS IT POSSIBLE TO MEET THE PRACTICAL REQUIREMENTS OF COST ALLOCATION?

on estimated competitive costs rather than actual costs. In this sense, SAC

becomes an element of cost allocation to competitive customers.

7 A. As noted above, the practical reality of regulation often requires that common 8 costs be allocated among jurisdictions, classes of service, rate schedules and 9 customers within rate schedules. The key to a reasonable cost allocation is an 10 understanding of cost causation. From a cost of service perspective, the best 11 approach is to directly assign costs where costs are incurred for a customer or 12 class of customers and can be so identified. Where costs cannot be directly 13 assigned, the development of allocation factors by rate schedule, or class, uses 14 principles of both economics and engineering. This results in appropriate 15 allocation factors for different elements of costs based on cost causation. For 16 example, we know from the way customers are billed that each customer requires 17 a meter. Meters differ in size and type depending on the customer's load 18 characteristics. These meters have different costs based on size and type. Thus 19 meter costs are customer related, but differences in the cost of meters are reflected 20 by using a different meter cost for each class of service.

21

22 Q. PLEASE DISCUSS THE SCALE ECONOMIES ASSOCIATED WITH GAS 23 DISTRIBUTION SERVICE.

24 A. Gas system scale economies reflect the relationship between the installed cost of 25 pipe by size and type, coupled with the increased capacity from pressure and pipe 26 diameter. Simply doubling the size of the gas main more than doubles the 27 available capacity of the main, at a cost approximately equal to or less than 28 double the smaller size all else equal. For a low pressure system, increasing pipe 29 size from two inch to four inch allows over five times the amount of gas to flow, 30 and the flow rate increases under higher pressure by more than six times that of 31 two inch pipe all else equal. The resulting cost causation implies that larger

1		customers impose lower per unit costs on the distribution system than do smaller
2		customers.
3		
4	Q.	WHAT IMPLICATIONS RESULT FROM SCALE ECONOMIES
5		RELATED TO COST OF SERVICE AND RATE DESIGN?
6	A.	The implication of scale economies for both cost allocation and rate design on the
7		gas system are quite important. Namely, the cost to serve residential and the
8		smallest general service customers (excluding gas costs) is the same regardless of
9		the size of customer, since the minimum system installed by EGNB will serve
10		nearly every customer in this group. As discussed below, the classes were
11		developed based on this consideration, and combined residential and the smallest
12		general service customers into a single homogeneous class of service.
13		
14	Sectio	on 3 - The Cost of Service Process
15		
16	Q.	PLEASE DESCRIBE THE COST OF SERVICE PROCESS.
17	A.	Cost of service begins with the collection of test year costs, load data (customer
18		billing and usage records) and operating data. The cost data is analyzed using a
19		three step process. The three steps are functionalization, classification and
20		allocation.
21		
22	Q.	PLEASE DESCRIBE THE COST FUNCTIONALIZATION.
23	A.	Functionalization is the first step of the cost analysis. Costs are functionalized
24		based on the purpose of the costs. The cost functions are production, storage,
25		transmission, distribution and customer (also referred to as "On site" for meter,
26		regulator and service line installed on customer's site). Not every gas utility
27		invests in facilities to perform each of these functions. Some gas utilities own gas
28		production assets such as wells and gathering facilities that would be part of the
29		production function. The storage function may be underground storage facilities
30		or LNG tanks and related assets. For an LDC, transmission mains are usually
31		very large steel mains operating under pressures similar to long haul pipelines.

1 Distribution facilities include city gate stations, mains and related equipment such 2 as valves. Customer facilities include a portion of service lines, meters and 3 regulators installed on-site at the customer's premises. EGNB currently performs 4 only the distribution and customer functions, because they have not invested 5 resources in production, storage and transmission.

- 6
- 7

Q. PLEASE DESCRIBE COST CLASSIFICATION.

8 A. The second step in the cost of service process is cost classification. The purpose 9 of this step is to classify costs based on the underlying cost causation. The four 10 cost defining characteristics for a gas utility are demand (capacity), commodity, 11 customer and revenue. Demand costs refer to those portions of the system that 12 must be designed to serve the maximum demand on that portion of the system. In 13 the case of a gas LDC the system as a whole is designed to serve the design day 14 load requirements of its customers. Portions of the system may be designed to 15 serve the design day load of a specific customer. Large industrial customers may 16 have a design day that is not coincident with the system peak, in which case local 17 facilities must serve the customer on its design day. Commodity costs are those 18 costs that vary directly with the amount of gas consumed. Customer costs vary 19 with specific customer requirements, the number of customers or both. Revenue 20 related costs include costs that vary with sales revenue.

21

22 Some costs cannot be directly classified as demand, commodity, customer or 23 revenue. These costs are classified based on the factor most closely related to 24 cost incurrence. For example, it is possible to classify mains into a customer and 25 demand component directly. The O&M expenses for mains are then classified in 26 the same way the mains account is classified. General plant is most closely 27 related to labour costs, as these costs are typically incurred in support of the 28 utility's workforce, so that the classification of labour between customer and 29 demand in all of the non-general plant accounts serves as the basis for classifying 30 general plant between demand and customer. Thus the same percentage of labour

1		classified as demand is used to classify general plant as demand and so forth. The
2		details of classification are part of the cost study as discussed below.
3		
4	Q.	PLEASE DESCRIBE THE COST ALLOCATION STEP.
5	A.	The final step of the cost of service process is the allocation of those costs that
6		cannot be directly assigned. Cost studies use two types of allocation factors:
7		external factors and internal factors.
8		
9		External allocation factors are based on direct knowledge from data in the utility's
10		accounting and other records. For example, distribution costs are functionalized
11		to various distribution accounts, classified to demand and customer and are
12		allocated by external distribution allocation factors related to design day demand
13		and number and type of customers. Consider the example of the external
14		allocation factor used in the allocation of mains. The cost of distribution mains
15		are known and functionalized directly to the distribution function. Once assigned
16		to distribution, the costs are classified as demand or customer related using the
17		minimum system as the external factor for the customer component and the
18		design day demand for the demand component of costs. In the case of EGNB,
19		77% of mains were determined to represent the cost of the minimum system
20		requirements and 23% to meet peak demand needs. The costs are then allocated
21		to each class of service based on the number of customers in the class for
22		customer costs and the design day demand for the class for demand costs.
23		
24		Internal allocation factors are based on some combination of external allocation
25		factors, previously directly assigned costs and other internal allocation factors.
26		For example, the allocation factors for property insurance costs are based on plant
27		investment amounts assigned to each function; it is necessary to compute the
28		amount of plant by function before property insurance costs can be assigned.
29		Both external and internal allocation factors are used in each of the classification
30		and allocation steps.

31

1

2 Q. WHAT FACTORS CAUSE THE LDC TO INCUR DISTRIBUTION 3 COSTS?

4 Embedded costs for the distribution system are determined by two major factors: A. 5 (1) the number and location of customers and (2) their demands (albeit for gas 6 distribution the impact of demand becomes less important when pipe scale 7 economies for residential and small commercial customers cause the minimum 8 installation to also serve design day demand). Utility cost studies have 9 traditionally attempted to identify a portion of distribution costs as customer-10 related and the remaining portion as demand-related. While it is true that 11 marginal demand costs play a role in the installed facilities, the customer 12 considerations play a much larger role since local facilities and policies reflect the 13 underlying customer mix and density. The critical issue for a gas system is that 14 the system provides sufficient capacity to meet the design day load requirements 15 of customers. For residential and the smallest general service customers, the 16 smallest distribution pipe installed on the system will serve the design day 17 capacity of these customers. As a result, the cost to serve the individual 18 customers in these classes is the same regardless of the design day demand.

19

20 Q. HOW ARE THESE PRINCIPLES TRANSLATED INTO THE COST OF 21 SERVICE STUDY?

22 A. The development of allocation factors to reflect the way system costs are incurred 23 provides the link between principles and practice. For example, the demand 24 portion of the gas distribution system must be allocated on design day requirements. This point is discussed in the National Association for Regulatory 25 26 Utility Commissioners ("NARUC") Gas Distribution Rate Design Manual 27 ("NARUC Manual") as follows: 28 Demand or capacity costs vary with the quantity or size of plant and 29 equipment. They are related to the maximum system requirements which

1 2

3

the system is <u>designed</u> to serve during short intervals and <u>do not vary with</u> the number of customers or their annual usage.⁴ (Emphasis added.)

4 The design day demand allocation factor is developed using the maximum level 5 of heating degree days as the basis of the demand allocator for the system 6 facilities that are classified as a demand component. The principle of cost 7 causation requires a reasonable allocation methodology to use design-day demand 8 as the allocation factor for the demand portion of mains. Similarly, customer 9 costs must be allocated to classes based on the number of customers or in some 10 cases the weighted number of customers. Where gas commodity service is 11 unbundled, there is no allocation of commodity costs required, as is the case for 12 EGNB. Each choice of an allocation factor is made to reflect the practical 13 realities of system operation and the variable, or variables that cause a particular 14 cost category. This is the way to translate cost principles into a cost of service 15 study.

16

17

Q. HOW DO OTHER ALLOCATION FACTORS SATISFY THESE

18 **PRINCIPLES?**

A. By carefully understanding how costs are incurred, it is possible to develop
allocation factors that match costs with the service or activity responsible for the
costs. The following is a summary of some of the major allocation factors and the
relationship to cost causation.

Customers- Certain costs such as meter and service line are directly
 related to the number of customers. The use of customers to allocate these
 costs ties cost causation to allocation. Similarly, some portion of the
 system of mains is directly related to connecting the customer to the
 system so it is appropriate to allocate a portion of mains to customers.

⁴ Gas Distribution Rate Design Manual, Prepared by the NARUC Staff Subcommittee on Gas, June 1989, pp. 23-24

The cost study uses a minimum system method⁵ to estimate the customer 1 2 component of mains. Even within the customer allocation factor, cost 3 analysis must correctly factor in the different unit costs among customer 4 classes. For example there is a difference in meter costs for customers by 5 size and type of meter. The customer allocation of meter costs reflects these differences by using a weighted customer count or actual class meter 6 7 costs to reflect meter cost differences. 8 2. General Plant- The allocation of general plant considers the use of that 9 plant in the allocation process. Since much of general plant is directly 10 related to employees (office space, office equipment, tools and computer 11 related investment), these costs are allocated on a labour allocation factor. 12 3. O&M Expenses- The allocation of O&M expenses follow the allocation of 13 the plant that it supports. The rationale for this is that the plant allocation 14 reflects the factors that cause the plant requirements. Since O&M is 15 designed to allow the plant to operate and continue its useful life, the 16 expenses associated with that plant are related to the classification of the 17 plant. Thus the allocation to design day demand or customer follows 18 directly from the allocation of the plant for which the expenses are 19 incurred. Thus distribution operation and maintenance expenses are 20 allocated the same way that the plant is allocated. 21 4. Deferral Account / Development O&M- For EGNB, one unique rate base 22 item is the Deferral Account. Also, certain expenses associated with 23 development were allowed to be deferred (Development O&M). These 24 costs are essentially functionalized as other costs to keep them separate for 25 rate making purposes, and classified as plant since they related to deferred 26 costs associated with the operation of the distribution system. The 27 allocation follows the plant allocation factors of demand and customer 28 based on the weighting of the plant components because the costs are

⁵ The minimum system method calculates the cost of all mains on the system at the cost of the smallest size main installed by the utility. This is usually 2 inch plastic main. These costs are compared to the actual cost of all main (in the same year dollars) to produce a percentage of main costs to be classified as customer related.

1		caused by the existence and operation of the underlying plant developed to
2		serve both design day demand and customers.
3		The above discussion illustrates how the application of cost principles results in
4		the allocation of costs based on cost causation.
5		
6	Q.	DOES THE COST OF SERVICE ANALYSIS PROVIDE INFORMATION
7		USEFUL FOR RATE DESIGN?
8	A.	Yes. For example, the cost of service study allows the analyst to determine
9		appropriate service classifications for use in developing rates. For EGNB, the
10		result of class considerations permitted the development of a small general service
11		class that includes both residential and small commercial customers based on the
12		size of customers. For this class, customers are served with the same type of
13		meter, regulator, service line and main. The result is a relatively homogeneous
14		class of customers served under the same rate design.
15		
16	Section	on 4 - Results of the Cost Study
17		
18	Q.	PLEASE DISCUSS THE APPLICATION OF THE THREE STEPS IN THE
19		COST OF SERVICE STUDY.
20	A.	Costs are functionalized and classified in the study based on accounting data from
21		the books and records of EGNB. Costs are allocated to classes based on a variety
22		of allocation factors designed to reflect cost causation that ultimately reflect
23		design day demand and customers.
24		
25	Q.	PLEASE DESCRIBE THE RESULTS OF THIS PROCESS AS APPLIED
26		TO THE COST OF SERVICE DATA.
27	A.	The following section outlines, by account, the functionalization and
28		classification of costs. The allocation for these costs is discussed in general
29		below.
30		I. Gas Plant in Service
31		A. Intangible Plant - None

1	B. Production Plant - None
2	C. Storage Plant - None
3	D. Transmission Plant - None
4	E. Distribution Plant
5	a. Land and Land Rights
6	Land and Land Rights are functionalized and classified based on other
7	distribution accounts.
8	b. Services
9	Services are functionalized to Distribution and then classified to Distribution
10	Customer.
11	c. Mains
12	As discussed earlier, mains are functionalized to Distribution, and then classified
13	as either Distribution Customer or Distribution Demand. The customer
14	component percentage was estimated using data for a mature utility of like size.
15	By employing the minimum-size concept, 77% of the distribution mains were
16	classified as customer related and 23% distribution demand related.
17	d. Measuring and Regulating Station Equipment
18	Measuring and regulating equipment is functionalized to Distribution and
19	classified to Distribution Demand.
20	e. Meters
21	The plant account for meters is functionalized to Distribution and then classified
22	to Distribution Customer.
23	f. Development O&M
24	As discussed above, these costs are classified to Distribution Demand and
25	Distribution Customer based on plant.
26	F. General Plant
27	General Plant accounts are functionalized and classified based on labour.
28	II. <u>Depreciation Reserve</u>
29	Depreciation Reserve accounts are functionalized and classified based on their
30	corresponding gross plant values.

1	III. Other Rate Base Items
2	These various accounts are functionalized and classified based on labour or plant.
3	The Deferral Account is classified as Distribution Demand and Distribution
4	Customer as discussed above.
5	I. Operation and Maintenance Expenses
6	A. Production Expenses
7	1. Gas Supply Operation Expense
8	These expenses are classified to Distribution Demand and Distribution Customer
9	based on distribution plant.
10	B. Storage Expenses- None
11	C. Transmission Expenses- None
12	D. Distribution Expenses
13	1. Mains/Services Expenses
14	Expense for mains and services are functionalized and classified proportionally
15	based on the Main and Service plant accounts.
16	2. Measuring and Regulating Expenses
17	Measuring and Regulating expenses are functionalized to Distribution and
18	classified to Distribution Demand.
19	3. General Maintenance
20	General Maintenance expenses are functionalized and classified based on the
21	cost of labour for the non-general plant accounts as discussed above.
22	II. Sales and Marketing Expenses
23	1. Advertising
24	Advertising expenses, which includes incentives, are functionalized Onsite and
25	classified to Customer.
26	2. Other Sales Promotion
27	Other Sales Promotion Expenses are functionalized Onsite and classified to
28	Customer.
29	III. Customer Service & Information Expenses
30	1. Meter Reading Expenses
31	Meter Reading Expense is functionalized Onsite and classified to Customer.

1	2. Customer Billing & Accounting Expense
2	Customer Billing & Accounting Expense are functionalized Onsite and classified
3	to Customer.
4	3. Uncollectible Account Expenses
5	Uncollectible Accounts Expense is functionalized Onsite and classified to
6	Customer.
7	IV. Administrative and General Expenses
8	Administrative and General Expenses are identified in two groups: labour related,
9	and plant related. Labour related expenses are functionalized and classified
10	according to labour in each function. Plant related expenses are functionalized
11	and classified according to plant in each function.
12	VI. Depreciation and Amortization
13	Depreciation and Amortization Expenses are functionalized and classified the
14	same as the allocation of Accumulated Depreciation and Amortization.
15	Accumulated Depreciation and Amortization follow the plant accounts for
16	function and for classification. If a plant account is classified as Demand the
17	accumulated depreciation logically must also be classified to Demand. If the
18	plant is classified as both Distribution Demand and Customer, the depreciation
19	expense and accumulated depreciation follow the plant.
20	VII. <u>Taxes</u>
21	A. General Tax, Real Estate Tax
22	General taxes are functionalized and classified based on the form of the tax. Real
23	Estate Taxes are functionalized and classified based on Plant.
24	B. Franchise and Revenue Taxes: None
25	C. Income Taxes: None
26	V. <u>Revenue and Other Revenue</u>
27	Revenues were functionalized and classified based on revenue requirements.

1		
2	Q.	PLEASE DISCUSS THE ALLOCATIONS USED IN THE COST OF
3		SERVICE STUDY.
4	A.	In general, the demand allocation factors are related to design day requirements.
5		There are no commodity related costs in the study. The customer allocation
6		factors are based on the number of customers in each class. The final allocation
7		for each account is summarized in the cost of service study.
8		
9	Q.	PLEASE DESCRIBE THE COST OF SERVICE SCHEDULES
10		ATTACHED TO THE TESTIMONY.
11	A.	There are five schedules attached to the testimony that provide the results of the
12		cost of service study based on the concept of a "Mature Utility", using accounting
13		and cost of service assuming amortization of the deferred accounting treatment
14		associated with the Development Period.
15		• Schedule HEO-1 consists of 5 pages and represents the results of the class
16		cost of service study for the test year. Each page contains an account
17		description or label for the accounting data indicating the category of cost.
18		The total dollars for each account is also provided. The remainder of the page
19		shows the proportion of each account allocated to each rate class based on the
20		proposed class definitions. Page 4 provides the net income (line 218) and
21		earned return (line 219) for EGNB and each rate class under current rates.
22		Page 5 provides the total cost of service revenue requirement (line 268) for
23		EGNB and each rate class assuming that each rate class must earn the allowed
24		return.
25		• Schedule HEO-2 consists of 5 pages and provides the summary of account
26		functionalization. As Schedule HEO-2 illustrates, all EGNB costs are
27		functionalized as distribution and on-site (customer).
28		• Schedule HEO-3 consists of 6 pages and summarizes the classification of the
29		distribution function accounts. No portion of distribution costs are related to
30		commodity so no portion of these costs is classified as commodity.

1		• Schedule HEO-4 consists of 20 pages and provides the allocation of each
2		account by classification and by rate class.
3		• Schedule HEO-5 consists of 4 pages and provides a summary of the allocation
4		factors by account and function.
5		
6	Q.	PLEASE DISCUSS THE IMPLICATIONS OF THE COST STUDY FOR
7		THE DETERMINATION OF THE END POINT OF THE
8		DEVELOPMENT PERIOD.
9	A.	The cost of service study provides a benchmark for determining the revenue
10		requirement that must be recovered from rates in order for the utility to have a
11		reasonable opportunity to earn the allowed return. The results demonstrate the
12		level of revenue required to provide and sustain a mature utility. In addition, the
13		results provide guidance related to the benefit of additional system expansion
14		through the addition of new customers. Where adding customers produces more
15		revenue than additional cost, the unit cost of service will decline.
16		
17	Secti	on 5 - Principles of Rate Design
18		
19	Q.	PLEASE IDENTIFY THE PRINCIPLES OF RATE DESIGN YOU HAVE
20		RELIED ON TO RECOMMEND A RATE PROPOSAL BELOW.
21	А.	A number of rate design principles or objectives find broad acceptance in
22		regulatory and policy literature. These include:
23		1. Efficiency;
24		2. Cost of Service;
25		3. Value of Service;
26		4. Stability;
27		5. Non-Discrimination;
28		6. Administrative Simplicity;
29		7. Balanced Budget.
30		

These rate design principles draw heavily on the "Attributes of a Sound Rate
 Structure" developed by James Bonbright in <u>Principles of Public Utility Rates.</u>
 Each of these principles plays an important role in analyzing the rate designs
 discussed in my testimony. To understand the role these principles play, the
 following discusses each of the principles.

- 6
- 7

Q. PLEASE DISCUSS THE PRINCIPLE OF EFFICIENCY.

8 A. The principle of efficiency broadly incorporates both economic and technical 9 efficiency. As such, this principle has both a pricing dimension and an 10 engineering dimension. Economically efficient pricing promotes good decision-11 making by gas producers and consumers, fosters efficient expansion of delivery 12 capacity, results in efficient capital investment in customer facilities and 13 facilitates the efficient use of existing pipeline, storage and distribution resources. 14 The efficiency principle benefits stakeholders by creating outcomes for regulation 15 consistent with the long-run benefits of competition while permitting the 16 economies of scale consistent with the best cost of service. Technical efficiency 17 means that the development of the system is designed and constructed to meet the 18 design day requirements of customers using the most economic equipment and 19 technology consistent with design standards.

20

21

22

Q. PLEASE DISCUSS THE COST OF SERVICE AND VALUE OF SERVICE PRINCIPLES.

A. These principles each relate to designing rates that recover the total revenue
requirement without causing inefficient choices by consumers. The cost of
service principle contrasts with the value of service principle when certain
transactions do not occur at price levels determined by embedded cost of service.
In essence, the value of service acts as a ceiling on prices. Where prices are set at
levels higher than the value of service, consumers will not purchase the service.

30 As previously noted, the calculation of a "true" cost of service is complicated by 31 the fact that for network industries like the natural gas distribution industry, the

1 provision of public utility service often involves joint and common costs which 2 must be allocated (rather than directly assigned) to specific customer classes or 3 rate schedules to develop a full cost of service study. While a good fully 4 distributed cost of service analysis can be performed using principles of cost 5 causation, informed judgment is nonetheless required to perform such a study. A 6 fully distributed cost of service study, properly reflecting cost causation principles 7 and employing sound methods, provides a reasonable tool for evaluating the 8 allocation of the total revenue requirement to customer classes (interclass 9 distribution) and within the customer classes (intraclass distribution). 10 Importantly, the cost allocation must also recognize the value of service ceiling. 11 This is particularly true for a greenfield operation where the maximum rate 12 applicable to a customer must be less than the cost of an alternative energy source 13 for providing the end use services from another energy source. Failure to set rates 14 below the value of service ceiling means that customers will elect to use other 15 energy sources to the detriment of all customers.

16

17

Q. PLEASE DISCUSS THE PRINCIPLE OF STABILITY.

18 A. The principle of stability typically applies to customer rates. This principle 19 suggests that reasonably stable and predictable prices are important objectives of 20 a proper rate design. The stability principle also incorporates the concept of 21 gradualism in moving from one system of pricing to another. For example, under 22 this principle changing from one rate form to another may require several steps to 23 gradually transition to new rates in order to prevent customer rate shock that 24 would occur if the transition resulted in significant changes for large numbers of 25 customers. Of course, bills for heating customers and market commodity rates are 26 not stable because of weather and market volatility. This does not mean that such 27 rates violate the stability principle since the delivery service portion remains the 28 same regardless of the weather or the cost of gas. Under cost of service rates, it is 29 not unusual to reflect market fluctuations based on gas commodity costs although 30 some utilities have purchased gas adjustment mechanisms that smooth out market 31 fluctuations, thus sacrificing price efficiency for stability under a regulated

1		pricing process. Given the unbundled gas supply in New Brunswick, there is no
2		issue related to stability.
3		
4	Q.	PLEASE DISCUSS THE CONCEPT OF NON-DISCRIMINATION.
5	A.	The concept of non-discrimination requires prices designed to promote fairness
6		and avoid undue discrimination. Fairness requires no undue subsidization either
7		between customers in the same class or across different classes of customers. As
8		noted above, there is a range of outcomes that may be reasonable on economic
9		grounds- between marginal cost and SAC.
10		
11		This principle recognizes that the ratemaking process requires discrimination
12		where there are factors at work that cause the discrimination to be useful in
13		accomplishing other objectives. For example, things like the location, type of
14		meter and service, demand characteristics, size, and a variety of other
15		considerations are often recognized in the design of utility rates to properly
16		distribute the total cost of service to and within customer classes.
17		
18	Q.	PLEASE DISCUSS THE PRINCIPLE OF ADMINISTRATIVE
19		SIMPLICITY.
20	А.	The principle of administrative simplicity as it relates to rate design requires
21		prices reasonably simple to administer and understand. This concept includes
22		price transparency within the constraints of the ratemaking process. Prices are
23		transparent when customers are able to reasonably calculate and predict bill levels
24		and interpret details about the charges resulting from the application of the tariff.
25		The principle of simplicity also recognizes that different customer classes may
26		have different tolerances for complexity. Thus, it is not unusual to have more
27		complex rates for larger commercial and industrial classes because the more
28		complex rates track costs better and the customers have more expertise to
29		understand the rates.

1

2

Q. PLEASE DISCUSS THE PRINCIPLE OF THE BALANCED BUDGET.

3 A. Finally, there is the critical principle that rate design permits the utility a 4 reasonable opportunity to recover the allowed revenue requirement based on the 5 cost of service. Proper design of utility rates is a necessary condition to enable an 6 effective opportunity to recover the cost of providing service included in the 7 revenue requirement authorized by the regulatory authority. This principle is very 8 similar to the stability objective previously discussed from the perspective of 9 customer rates. Under the balanced budget principle, recognition is given to the 10 fact that rates are set prospectively. As previously noted, the first twelve months 11 of the new rates is referred to as the "Rate Effective Period". This principle 12 recognizes that the costs and revenues from a test period are intended to be an 13 estimate of the costs and revenues in the Rate Effective Period. It is incumbent on 14 the regulatory process to be assured that the rates provide a reasonable 15 opportunity to earn the allowed return in that Rate Effective Period. When rates 16 fail to meet this test, the rates are unreasonable.

17

18

19

Q. AT TIMES, CAN THE OBJECTIVES EMBEDDED IN THESE PRINCIPLES COMPETE WITH EACH OTHER?

20 A. Yes, like most principles that have broad application, these principles can 21 compete with each other. This competition, or tension, requires further judgment 22 to strike the right balance between the principles. Detailed evaluation of rate 23 design alternatives and rate design recommendations must recognize the potential 24 and actual competition between these principles. Indeed, Bonbright discusses this 25 tension in detail. Rate design recommendations must deal effectively with such 26 tension. For example, as noted above, there are tensions between cost and value 27 of service principles.

1 2

3

Q. PLEASE DESCRIBE THE CONFLICT BETWEEN MARGINAL COST PRICE SIGNALS AND THE RECOVERY OF THE REVENUE REQUIREMENT.

4 The conflict between good price signals based on marginal cost and a balanced A. 5 budget or revenue recovery principle arises because marginal cost is below 6 average cost due to economies of scale. Where fixed delivery service costs do not 7 vary with volume of gas sales, marginal costs for delivery equal zero. Marginal 8 customer costs equal the additional cost of providing the entire delivery service to 9 the customer. Marginal cost tends to be either above or below average cost in 10 both the short run and the long run. This means that marginal cost-based pricing 11 will produce either too much or too little revenue to support the revenue 12 requirement. This suggests that efficient price signals may require a multi-part 13 tariff designed to meet the revenue requirements while sending marginal cost 14 price signals related to consumption decisions. Properly designed, a multi-part 15 tariff may include elements such as access charges, facilities charges, demand 16 charges, consumption charges and the potential for revenue credits. In the case of 17 a gas LDC, for residential and small general service customers the combination of 18 scale economies and class homogeneity permits the use of a single fixed annual 19 charge that meets all of the requirements for an efficient rate and recovers the embedded cost revenue requirement as an additional rate option. For larger 20 21 customers, a combination of these elements permit good price signals and revenue 22 recovery; however, the tariff design becomes more difficult to structure and likely 23 will no longer meet the requirements of simplicity. Therefore, sacrificing some 24 economic efficiency for a customer class in order to maintain simplicity 25 represents a reasonable compromise. For larger customers the added complexity 26 of a demand charge is not a concern. Further, for the largest customers where 27 costs and load characteristics differ significantly, the cost of metering is customer 28 specific and each customer creates its own unique requirements for distribution 29 service based on factors such as distance from the city gate, pressure requirements 30 and contract demand.

31

1	Q.	ARE THERE OTHER POTENTIAL CONFLICTS?
2	А.	Yes. There are potential conflicts between simplicity and non-discrimination and
3		between value of service and non-discrimination. Simple rates for classes that are
4		not homogeneous often result in intraclass subsidies because of different load
5		characteristics and facility requirements. Other potential conflicts arise where
6		utilities face unique circumstances that must be considered as part of the rate
7		design process.
8		
9	Q.	HOW ARE THESE PRINCIPLES TRANSLATED INTO THE DESIGN OF
10		GAS DISTRIBUTION RATES?
11	A.	The process of developing rates within the context of these principles and
12		conflicts requires a detailed understanding of all the factors that impact rate
13		design. These factors include:
14		1. System cost characteristics such as the embedded customer,
15		demand and commodity related costs by type of service;
16		2. Customer load characteristics such as peak demand, load factor,
17		seasonality of loads, and quality of service;
18		3. Market considerations such as elasticity of demand, competitive
19		fuel prices, end-use load characteristics and bypass alternatives
20		related to alternate fuels in the case of EGNB; and
21		4. Other considerations such as the value of service ceiling/marginal
22		cost floor, unique customer requirements, areas of under-utilized
23		facilities, opportunities to offer new services and the status of
24		competitive market development.
25		
26		In addition, the development of rates must consider existing rates and the
27		customer impact of modifications to the rates.
28		
29		In each case, a rate design seeks to recover the authorized level of revenue based
30		on the actual billing determinants occurring during the test period used to develop
31		the rates.

1		
2	Secti	on 6 - Rate Design for the Proposed Service Classes
3		
4	Q.	PLEASE DESCRIBE THE EXISITNG EGNB RATES.
5	A.	Currently, EGNB has the following rate schedules:
6		1. Small General Service Residential Electric (SGSRE)
7		2. Small General Service Residential Oil (SGSRO)
8		3. Small General Service Commercial (SGSC)
9		4. General Service (GS)
10		5. Contract General Service (CGS)
11		6. Contract Large General Service LFO (CLGS-LFO)
12		7. Contract Large General Service HFO (CLGS-HFO)
13		8. Off Peak Service (OPS)
14		9. Contract Large Volume Off Peak Service (CLVOPS)
15		10. Natural Gas Vehicle Fueling (NGVF)
16		For the various schedules applicable to smaller customers, the schedules consist
17		of a Monthly Distribution Customer Charge and a flat Monthly Distribution
18		Delivery Charge that is a volumetric charge per GJ. The contract service rates
19		consist of a two part Monthly Distribution Delivery Charge, with a demand
20		charge per GJ of the greater of contract demand or the actual billing demand and a
21		flat charge per GJ for delivered volumes. Rate CLGS-LFO has a declining block
22		charge per GJ for delivered volumes.
23		
24	Q.	PLEASE DESCRIBE THE PROPOSED NEW RATE CLASSES.
25	A.	The proposed new rate classes consist of the following:
26		1. Small General Service (SGS)
27		2. Mid General Service (MGS)
28		3. Large General Service (LGS)
29		4. Contract General Service (CGS)
30		5. Industrial Contract General Service (ICGS)
31		6. Off Peak Service (OPS).

1

2 Q. HOW DO UTILITIES DETERMINE THE NUMBER AND TYPE OF 3 RATE CLASSES?

4 The determination of rate classes may be accomplished in a variety of ways. A. 5 Classes may be determined based on customer end use characteristics such as 6 residential, commercial and industrial. Rate classes are designed to group 7 customers together so that the groups are relatively homogeneous in terms of load 8 characteristics and methods of taking service. This is of particular concern where 9 rates must be relatively simple since such rates cannot track variations in costs 10 within rate schedules with limited rate components. In determining the rate 11 classes for EGNB, the process focused on the fundamental principles of class 12 homogeneity in terms of load characteristics and the method of taking service (the 13 size and type of delivery facilities).

14

15 16

Q. PLEASE DESCRIBE THE DETERMINATION OF THE PROPOSED RATE CLASSES.

17 A. By grouping homogeneous customers together, the proposed rate classes provide 18 a reasonable basis for cost determination. The SGS rate includes the former 19 residential rates as well as the smallest general service customers. The SGS 20 customers have similar load characteristics based on the end use of gas behind the 21 meter and are served using similar facilities. The other rate classes are delineated 22 by customer size based on peak month usage as a proxy for design day demand, 23 and recognize that customer size is a significant element in the determination of 24 the cost to serve customers and the impact of scale economies. The following 25 table summarizes the classification for each class.

I	I	ł	1	I	
-	-		I		
		1			

2

3

Table 1 Rate Classification Based on Size

Rate Class	Minimum Size	Maximum Size
	Peak Month Use	Peak Month Use
SGS	None	Less than 60 GJ
MGS	60 GJ	Less than 250 GJ
LGS	250 GJ	None
CGS	1,000 GJ	Less than 10,000 GJ
ICGS	10,000 GJ	None

4 Rates SGS, MGS, LGS and OPS consist of a customer charge and, with the 5 exception of SGS, a declining block rate charge, and as such require more 6 homogeneity within the class to track intraclass costs. The other rates have a 7 contract demand charge and a declining block rate charge. The declining block 8 rate charge recognizes the scale economies associated with delivery service. As 9 with any new rate designs, it may be necessary to incorporate other features such 10 as additional rate blocks, graduated customer charges and potentially other rate 11 designs to track costs more precisely as the utility becomes a mature utility. 12 Specifically, it is proposed that the LGS rate class have at least two different 13 customer charges based on meter type and size to reflect the cost of service. A 14 seasonally differentiated tail block for the non-heating season to adequately track 15 costs for high load factor customers in the class is also proposed for the LGS rate 16 class. Finalizing these types of determinations will be part of the cost of service/ 17 rate design process for a mature utility and the transition away from the 18 Development Period.

- 19
- 20 21

Q. DOES USING SIZE AS THE BASIS FOR RATE CLASSES CREATE AN ISSUE RELATIVE TO THE CROSSING POINTS AMONG THE RATES?

A. Yes. Using size to determine the rate applicable to customers creates an issue for
customers whose usage is near a breakpoint in the rates. For this reason, it is
useful to define rate provisions so that customers do not switch between rate

1 schedules when there is a short term benefit of doing so. For example, a customer 2 with one or two winter months when the temperature is colder than normal may 3 exceed 60 GJ and thus would be eligible for the MGS rate. However, the MGS 4 rate would not be the proper rate for the customer except in cold winter months. 5 The solution to this type of issue is to require a 12 month term of service for any 6 rate schedule to prevent rate shopping by customers. In addition, the use of 7 minimum bills also prevents customers from shifting to a different rate without 8 class load characteristics reflective of that rate. Minimum bills may be more than 9 the customer charge. For example, the LGS minimum bill might be the customer 10 charge plus 10 GJ of consumption each month of the year or possibly during the 11 winter months of December through March. This would assure that only large 12 customers would use this rate schedule. By using a term of service and a 13 minimum bill, issues related to the crossing points are resolved.

14

15 16

Q. HAVE YOU DEVELOPED PROTOTYPE RATES BASED ON THE COST OF SERVICE STUDY AS EXAMPLES OF RATE OPTIONS?

17 No. At this time, there is no proposal to move from market based rates. The final A. 18 design and costing of the first cost of service rates will depend on many factors 19 that should be reviewed at the time of transition, rather than in the abstract, when significant changes may occur in the elements of the rates and levels of costs 20 21 based on a variety of factors during the Development Period. Rather, we have 22 provided a summary of the average cost per GJ for delivery service based on cost 23 of service revenue requirements less other revenues to illustrate the approximate 24 magnitude of rates resulting from strict adherence to the cost study. Schedule 25 HEO-6 provides this information.

26

27 Q. HOW SHOULD THESE RATES BE USED?

A. These rates should be the basis of a comparison of cost of service plus expected
gas costs to alternate fuel prices for determining if the cost of service is
sustainable over the long term. Based on the results of the cost study and the unit
costs to be recovered under cost based rates, it is reasonable to conclude that such

1		rates are not currently viable or sustainable across all rate classes. Continued
2		expansion of the system is critical to achieving sufficient scale necessary to end
3		the Development Period. In addition, given the use of market based rates, some
4		transition period will be necessary to move to the end state based on sound rate
5		design principles.
6		
7	Secti	on 7 - Summary
8		
9	Q.	PLEASE SUMMARIZE YOUR TESTIMONY.
10	А.	My testimony discusses both the theory and application of gas cost of service and
11		rate design. I demonstrate that the cost of service methodology properly reflects
12		cost causation and produces reasonable results related to the costs for each class
13		of service. The cost of service also produces the annual revenue requirement for
14		EGNB based on the 2010 test year. This information is useful relative to the
15		required level of rates and the potential timing of the end of the Development
16		Period.
17		
18	Q.	DOES THIS COMPLETE YOUR TESTIMONY?

19 A. Yes.